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Abstract  
Large-scale standardized test have been widely used for educational and licensure testing.  In 
computerized adaptive testing (CAT), one of the practical concerns for maintaining large-scale 
assessments is to ensure adequate numbers of high-quality items that are required for item pool 
functioning.   Developing items at specific difficulty levels and for certain areas of test plans is a well-
known challenge.   The purpose of this study was to investigate strategies for varying items that can 
effectively generate items at targeted difficulty levels and specific test plan areas. Each variant item 
generation model was developed by decomposing selected source items possessing ideal measurement 
properties and targeting the desirable content domains. 341 variant items were generated from 72 source 
items.  Data were collected from six pretest periods.  Items were calibrated using the Rasch model.  
Initial results indicate that variant items showed desirable measurement properties.  Additionally, 
compared to an average of approximately 60% of the items passing pretest criteria, an average of 84% of 
the variant items passed the pretest criteria.  
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Developing Item Variants: An Empirical Study 
 

Large-scale standardized tests have been widely used for educational and licensure testing.  
In computerized adaptive testing (CAT), one of the practical concerns for maintaining large-
scale assessments is ensuring the availability of adequate numbers of high-quality items that are 
required for item pool functioning.   Developing items at specific difficulty levels and for certain 
areas of test plans is a well-known challenge.   The purpose of this study was to investigate 
strategies for effectively generating items at targeted difficulty levels and specific test plan areas.  

Theoretical Background 

Earlier researchers (LaDuca, Staples, Templeton, & Holzman, 1986, Bejar, 1996) described 
item modeling as a construct-driven approach to test development that is potentially validity-
enhancing.   Earlier research focused on mirroring cognitive processes in answering surveys for 
psychological performance (Bejar, 1993; Embretson & Gorin, 2001; Embretson, 1999; Bejar & 
Yocom, 1991), with the intention of generating isomorphic items.  For large-scale testing, some 
item models are more statistics-driven (e.g., Glas & van der Linden, 2003) and others are more 
content-driven (e.g., Bejar, Lawless, Morley, Wagner, Bennett, & Revuelta, 2003).  Each item 
model provides templates that allow the decomposition of knowledge or skills and identification 
of the key components that constitute meaningful new items.   

As described by Shye, Elizur and Hoffman (1994), item features can be mapped into an item 
by a set of rules using Guttman’s (1969) facet theory.  That is, by identifying the fixed and 
variable elements in items, stimulus features are substitutable in the variable elements for 
generating structurally equivalent items. In this study, variant item models were developed by 
decomposing the selected source items possessing ideal measurement properties and targeting 
the desirable content domains.  The selected source items were operational items in a CAT 
examination for nurses and were used to set up the basic frame of the new items.  That is, the 
sentence structure in source items was fixed. Item length and grammatical syntax were also 
fixed.  Variant items can be defined as generated items from a model in which specific item 
stimulus features can vary.  As Table 1 shows, four item models were proposed to generate item 
variants. Ideally, the proposed models would generate variant items with similar item difficulty 
and other psychometric features. 

Method 

Data 

All variant items were administered as pretest items to at least 400 candidates in order to 
gather statistical information.  No more than three variant items generated from the same source 
item were selected for one pretest pool, and the administration of the pretest items was controlled 
through a masking process.  This strategy was 



item statistics are from random samples.  The random selection scheme implemented in the test 
driver ensured that candidates were exposed to items randomly sampled from the pretest pool.  



Table 2. Pretest Results of Variant Items  

 
 

Exam 
No. of Items 

in Pretest 

No. of items 
in Analysis 

(Exposure > 400) 
No. of Items 
Passed Pretest 

Percentage 
of Passing*

Pretest pool 1 147 93 74 79.57% 
Pretest pool 2 199 104 82 78.85% 
Pretest pool 3 21 20 18 90.00% 
Pretest pool 4 61 59 53 89.83% 
Pretest pool 5 31 31 31 100.00% 
Pretest pool 6 34 34 27 79.41% 
Total 493 341 285 83.58% 

*(Number of items passed pretest) / (Number of items in analysis). 

 

 

Table 3. Summary Statistics of Item p-Value Difference 

Factors N     Mean    SD    Minimum   Maximum 

Item model      
  Key 71 ��0.001 0.190 ��0.465 0.330 
  Stem 105   0.039 0.159 ��0.661 0.445 
  Distractor 101   0.066 0.124 ��0.271 0.425 
  Other 64 ��0.080 0.257 ��0.613 0.443 
Item type      
  FC 39   0.063 0.092 ��0.111 0.289 
  MC 269   0.041 0.169 ��0.661 0.445 
  MR 33 ��0.240 0.204 ��0.613 0.099 
Total 341   0.016 0.186 ��0.661 0.445 

 

Table 4 reports the summary statistics the difference between the item-�T  point-biserial 
correlation of the source and that of the variant items. This type of point-biserial correlation 
reflects the association between the item scores (0 = incorrect, 1 = correct) and the CAT final �T 
estimates.  The difference of the item-�T  point-biserial correlation was calculated by rpb(diff) = 
variant item rpb – source item rpb 

As Table 4 shows, the means of rpb(diff) for item models varied from ��0.034 to ��0.062.  The 
means of rpb(diff) for item type were similar, ranging from ��.053 to 0.007.  Among three item 
types, FC items had the smallest mean rpb(diff) of 0.007 with the smallest SD of 0.047, indicating 
that FC variant items had stable item discrimination power.   Overall, the item-�T  point-biserial 
correlation difference had a mean of ��0.045 and a SD of 0.083. 
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Table 4. Summary Statistics of rpb(diff) 



The means of b



Figure 2. Box Plot of b(diff) for the Variant Item Type 

Item type

MRMCFC



First, Levene’s homogeneity test was significant (F(7, 333) = 5.519, p< .05), indicating that the 
variances in the different groups of the 4 (item model) �u 3 (item type) design were not 
homogeneous.  According to Lindman (1974, p. 33) and Box (1954), the F statistic is quite 
robust against the violations of the homogeneity assumption.  The F test can provide information 
concerning the group mean difference but special caution should be paid in interpreting the 
results.   

The ANOVA model in Table 7 was significant (F(7, 333) = 15.681, p < .05), indicating that at 
least one group mean was significantly different from others.  Given that the interaction of item 
model and item type was not significant (F(2, 333) = 0.203, p > .05), it was appropriate to explore 
the main effects for item model and item type.  The main effect for item model was significant 
(F(2, 333) = 8.379, p < .05) with an effect size of 0.067. The main effect of item type was also 
significant (F(3, 333 )= 2.644, p < .05) with a effect size of 0.033. 

Table 7. Summary Results From a Two-Way ANOVA 
 

Source SS df MS F Sig. Partial ��2 
Corrected model 76.811(a) 7 10.973 15.681   .248 
Intercept 5.945 1 5.945 8.496 .004 .025 
Item model 16.758 2 8.379 11.974 .000 .067 
Item type 7.931 3 2.644 3.778 .011 .033 
Item model �u Item type .284 2 .142 .203 .816 .001 
Error 233.023 333 .700     
Total 319.992 341      
Corrected total 309.834 340      

      Note. R2 = .248 (adjusted R2 = .232). 

 

In order to identify which group means were different from others, Bonferroni’s post-hoc 
comparison was conducted for factor variant model and item type, respectively.  Tables 8 and 9 
tabulate all possible paired comparisons for item model and item type, respectively. Concerning 
item model, the “Other” model seemed to generate harder items more often than the Stem and 
Distractor models.  With regard to item type, MR variant items tended to have a positive shift on 
item difficulty more often that the FC and MC variant items.  Since the interaction was not 
significant, it is legitimate to conclude that items generated from the “Other” model with the item 
type of MR tended to have a more noticeable positive shift on item difficulty than the rest of the 
variant items.  
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Table 10. Item-Level Significant Tests of b-Value Differences  

Sig. 
Item Model Item Type Yes No Total 

Key MC  0 1 1 
  MC 7 32 39 
  MC 2 8 10 
  MC  0 11 11 
  MC  0 2 2 
  MC 1 6 7 
  MC 1  0 1 
Stem MC 2 21 23 
  MC 8 6 14 
  MC 6 9 15 
  MC 4 4 8 
  FC 15 18 33 
  MC 4 5 9 
  MC  0 3 3 
Distractor MC 2 25 27 
  MC 7 16 23 
  MC 6 19 25 
  MC 2 11 13 
  MC 1 6 7 
  MR  0 1 1 
  MC  0 1 1 
  MC 2 2 4 
Other MC 1 1 2 
  MC 2 2 4 
  MC 1  0 1 
  MC  0 7 7 
  MR 2 24 26 
  FC 2 4 6 
  MC 1 6 7 
  MR  0 6 6 
  MC  0 1 1 
  MC  0 4 4 
Key Total   11 60 71 
Stem Total   39 66 105 
Distractor Total   20 81 101 
Other Total   9 55 64 
  0 1 1 
  12 79 79 
  19 32 32 
  13 39 39 
  0 2 2 
  9 52 52 
  24 46 46 



Table 10, continued  
Item-Level Significant Tests of b-Value Differences  

Sig. 
Item Model Item Type Yes No Total 

 

  0 2 2 
  2 9 9 
 FC Total 17 22 39 
 MC Total 60 209 269 
 MR Total 2 31 33 
Grand Total   79 262 341 

       Note:. the significant difference level was �. = .05. 

 
Conclusions 
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